Computer Graphics


158pages on
this wiki
Add New Page
Talk0 Share


File:Colored pencils.jpg

Color or colour (see spelling differences) is the perception of the frequency (or wavelength) of light, and can be compared to how pitch (or a musical note) is the perception of the frequency or wavelength of sound.

It is a perception that, in humans, derives from the ability of the fine structures of the eye to provide the brain with differently filtered analyses of a view (usually three). The perception of color is influenced by biology (some people are born seeing colors differently or not at all; see color blindness), long-term history of the observer, and also by short-term effects such as the colors nearby. (This is the basis of many optical illusions.)

The science of color is sometimes called chromatics. It includes the perception of color by the human eye, the origin of color in materials, color theory in art and the physics of color in the electromagnetic spectrum.

Physics of color Edit

The colors of the visible light spectrum
color wavelength interval frequency interval
red ~ 625-740 nm ~ 480-405 THz
orange ~ 590-625 nm ~ 510-480 THz
yellow ~ 565-590 nm ~ 530-510 THz
green ~ 500-565 nm ~ 600-530 THz
cyan ~ 485-500 nm ~ 620-600 THz
blue ~ 440-485 nm ~ 680-620 THz
violet ~ 380-440 nm ~ 790-680 THz
Color, wavelength, frequency and energy of light.
Color \lambda \,\!/nm \nu \,\!/1014 Hz \nu_b \,\!/104 cm-1 E \,\!/eV E \,\!/kJ mol-1
Infrared >1000 <3.00 <1.00 <1.24 <120
Red 700 4.28 1.43 1.77 171
Orange 620 4.84 1.61 2.00 193
Yellow 580 5.17 1.72 2.14 206
Green 530 5.66 1.89 2.34 226
Blue 470 6.38 2.13 2.64 254
Violet 420 7.14 2.38 2.95 285
Near ultraviolet 300 10.0 3.33 4.15 400
Far ultraviolet <200 >15.0 >5.00 >6.20 >598

Electromagnetic radiation is characterized by its wavelength (or frequency) and the intensity or number of photons at each different wavelength. When this radiation has a wavelength inside the human visibility range (approximately from 380 nm to 740 nm), it is known as "visible light" or light within the (human) visible spectrum. A spectrum is a plot that records the intensity at each wavelength. The full spectrum (or distribution of color intensities) of the incoming radiation from an object determines the visual appearance of that object, including its perceived color. As we will see, there are many more possible spectral combinations than color sensations; in fact one may formally define a color to be the whole class of spectra which give rise to the same color sensation, although any such definition would vary widely among different species and also somewhat among individuals intraspecifically.

When light is incident on a surface it can either reflect, absorb or scatter. Smooth surfaces reflect and rough surfaces cause diffuse scattering. A surface that diffusely reflects all wavelengths equally is perceived as white, while a surface that absorbs all wavelengths equally is perceived as black. Reflection can be diffuse or specular (like a mirror) and a proper mirror also reflects all wavelengths equally, but is not perceived as white because it is smooth. Similarly, a black object can reflect light if it has a smooth finish (such as a layer of enamel or lacquer).

The familiar colors of the rainbow in the spectrum—named from the Latin word for appearance or apparition by Isaac Newton in 1671—contains all those colors that consist of visible light of a single wavelength only, the pure spectral or monochromatic colors.

The frequencies are approximations and given in terahertz (THz). The wavelengths, valid in vacuum, are given in nanometers (nm). A list of other objects of similar size is available.

Important noteEdit

The color table should not be interpreted as a definite list – the pure spectral colors form a continuous spectrum, and how it is divided into distinct colors is a matter of culture, taste, and language.

Similarly, the intensity of a spectral color may alter its perception considerably; for example, a low-intensity orange-yellow is brown, and a low-intensity yellow-green is olive-green.

Spectral versus non-spectral colors Edit

Most light sources are not pure spectral sources; rather they are created from mixtures of various wavelengths and intensities of light. To the human eye, however, there is a wide class of mixed-spectrum light that is perceived the same as a pure spectral color. In the table above, for instance, when your computer screen is displaying the "orange" patch, it is not emitting pure light at a fixed wavelength of around 600 nm (which is something most computer screens are unable to do). Rather, it is emitting a mixture of about two parts red to one part green light. Were you to print this page on a color printer, the orange patch on the paper, when lit with white light, would reflect yet another, more continuous spectrum. We cannot see those differences (although many animals can), and the reason has to do with the pigments that make up our color vision cells (see below).

A useful quantification of this property is the dominant wavelength, which matches a wavelength of spectral light to a non-spectral source that evokes the same color perception. Dominant wavelength is the formal background for the popular concept of hue.

In addition to the many light sources that can appear to be pure spectral colors but are actually mixtures, there are many color perceptions that by definition cannot be pure spectral colors due to desaturation or because they are purples (which are a mixture of red and violet light, from either end of the spectrum). Some examples of necessarily non-spectral colors are the achromatic colors (black, gray and white) and other colors such as pink, tan and magenta.

See metamerism (color) for a basic introduction as to why color matching challenges exist.

Physical basis of color Edit

A light wave can be analyzed as a superposition of sine waves, each of which has a specific frequency and wavelength. The eye gives limited information about the relative intensities of these sine waves (but not their phases — the eye is even more blind to phase than the ear, which can detect phase relationships of sounds only in certain very specific contexts). To understand which particular color perception will arise from a particular physical spectrum requires knowledge of the physiology of the retina. The human eye is also insensitive to polarization in most cases (though see Haidinger's brush), whereas some fish and mollusks can perceive it.

Color vision Edit

Though the exact status of color is certainly a matter of current philosophical dispute, color is arguably a psychophysical phenomenon that exists only in our minds. (See Qualia, for some of that dispute.) A "red" apple does not give off "red light", and it is misleading to think of things that we see, or of light itself, as objectively colored at all. Rather, the apple simply absorbs light of various wavelengths shining on it to different degrees, in such a way that the unabsorbed light which it reflects is perceived as red. An apple is perceived to be red only because normal human color vision perceives light with different mixes of wavelengths differently—and we have language to describe that difference.


In 1931, an international group of experts called the Commission Internationale d'Eclairage (CIE) developed a mathematical color model. The premise used by the CIE is that color is the combination of three things: a light source, an object and an observer. The CIE tightly controlled each of these variables in an experiment that produced the measurements for the system. Although Aristotle and other ancient scientists speculated on the nature of light and color vision, it was not until Newton that light was correctly identified as the source of the color sensation. Goethe studied the theory of colors, and in 1801 Thomas Young proposed his trichromatic theory which was later refined by Hermann von Helmholtz. That theory was confirmed in the 1960s and will be described below.


The retina of the human eye contains three different types of color receptor cells, or cones. One type, relatively distinct from the other two, is most responsive to light that we perceive as violet, with wavelengths around 420 nm (cones of this type are sometimes called short-wavelength cones, S cones, or, most commonly, but quite misleadingly, blue cones). The other two types are closely related genetically, chemically and in response. Each type is most responsive to light that we perceive as green or greenish. One of these types (sometimes called long-wavelength cones, L cones, or, misleadingly, red cones) is most sensitive to light we perceive as yellowish-green, with wavelengths around 564 nm; the other type (sometimes called middle-wavelength cones, M cones, or misleadingly, green cones) is most sensitive to light perceived as green, with wavelengths around 534 nm. The term "red cones" for the long-wavelength cones is deprecated as this type is actually maximally responsive to light we perceive as greenish, albeit longer wavelength light than that which maximally excites the mid-wavelength/"green" cones.

The sensitivity curves of the cones are roughly bell-shaped, and overlap considerably. The incoming signal spectrum is thus reduced by the eye to three values, sometimes called tristimulus values, representing the intensity of the response of each of the cone types.

Because of the overlap between the sensitivity ranges, some combinations of responses in the three types of cone are impossible no matter what light stimulation is used. For example, it is not possible to stimulate only the mid-wavelength/"green" cones: the other cones must be stimulated to some degree at the same time, even if light of some single wavelength is used (including that to which the target cones are maximally sensitive). The set of all possible tristimulus values determines the human color space. It has been estimated that humans can distinguish roughly 10 million different colors, although the identification of a specific color is highly subjective, since even the two eyes of a single individual perceive colors slightly differently. This is discussed in more detail below.

The rod system (which vision in very low light relies on exclusively) does not by itself sense differences in wavelength; therefore it is not normally implicated in color vision. But experiments have conclusively shown that in certain marginal conditions a combination of rod stimulation and cone stimulation can result in color discriminations not based on the mechanisms described above.

While the mechanisms of color vision at the level of the cones in the retina are well described in terms of tristimulus values (see above), color processing and perception above that base level are organized differently. A dominant theory of the higher neural mechanisms of color vision proposes three opponent processes, or opponent channels, constructed out of the raw input from the cones: a red-green channel, a blue-yellow channel and a black-white ("luminance") channel. This theory tries to account for the structure of our subjective color experience (see discussion below). Blue and yellow are considered complementary colors, or opposites: you could not experience a bluish yellow (or a greenish red), any more than you could experience a dark brightness or a hot coldness. The four "polar" colors proposed as extremes in the two opponent processes other than black-white have some natural claim to being called primary colors. This is in competition with various sets of three primary colors proposed as "generators" of all normal human color experience (see below).

Clinical issues Edit

If one or more types of a person's color-sensing cones are missing or less responsive than normal to incoming light, that person has a smaller or skewed color space and is said to be color deficient. Another term frequently used is color blind, although this can be misleading; only a small fraction of color deficient individuals actually see completely in black and white, and most simply have anomalous color perception. Some kinds of color deficiency are caused by anomalies in the number or nature of cones of the various types, as just described. Others (like central or cortical achromatopsia) are caused by neural anomalies in those parts of the brain where visual processing takes place.

Some animals may have more than three different types of color receptor (most marsupials, birds, reptiles and fish; see tetrachromat, below) or fewer (most mammals; these are called dichromats and monochromats). Humans and other old-world primates are actually rather unusual in possessing three kinds of receptors.

An unusual and elusive neurological condition sometimes affecting color perception is synaesthesia.


The term tetrachromat describes a human or an animal whose vision is based on four colors (from Greek: tettares = "four", chroma = "color"). Humans are ordinarily trichromats, meaning three-color vison is normal for our species. For other species of animals, however, tetrachromacy is normal; e.g. some species of spiders, most marsupials, birds, and reptiles, and many species of fish.

It could be possible for a human to have four distinct types of color receptors, rather than the usual three. In theory, such a person would have an extra and slightly different copy of either the medium- or long-wave cones. If these four types are sufficiently distinct in spectral sensitivity and neural ability develops to distinctly process the input from all four types of cones, a person may be a tetrachromat. However, the cone cells of animal tetrachromats have a different, more evenly-spaced, spectral sensitivity distribution than is believed possible for human tetrachromats.

Evidence suggests that such humans do exist, and that for genetic reasons, all are female. Their brains do appear to adapt to use the additional color information.

Color perceptionEdit

There is an interesting phenomenon which occurs when an artist uses a limited color palette: the eye tends to compensate by seeing any grey or neutral color as the color which is missing from the color wheel. E.g.: in a limited palette consisting of red, yellow, black and white, a mixture of yellow and black will appear as a variety of green, a mixture of red and black will appear as a variety of purple, and pure grey will appear bluish.

When the eye shifts attention after viewing a color for some time, then an afterimage of the complement of that color (the color opposite to it in the color wheel) is perceived by the eye for some time wherever it moves. This effect of color perception was utilised by Vincent van Gogh, a Post-Impressionist painter.

Effect of luminosity Edit

Note that the color experience of a given light mixture may vary with absolute luminosity, because both rods and cones are active at once in the eye, with each having different color curves, and rods taking over gradually from cones as the brightness of the scene is reduced. This effect leads to a change in color rendition with absolute illumination levels that can be summarised in the "Kruithof curve".

Cultural influences Edit

Different cultures have different terms for colors, and may also assign some color names to slightly different parts of the spectrum: for instance, the han character 青 (pronounced qīng in Mandarin and ao in Japanese) has a meaning that covers both blue and green; blue and green are traditionally considered shades of "青". In more contemporary terms, they are 藍 (lán) and 綠 (lǜ) respectively. For example, in Japan, although the traffic lights have the same red and yellow lights that other countries have, the "green" light is markedly "bluer" and is called aoi.

Similarly, languages are selective when deciding which hues are split into different colors on the basis of how light or dark they are. Apart from the black-grey-white continuum, English splits some hues into several distinct colors according to lightness: such as red and pink or orange and brown. To English speakers, these pairs of colors, which are objectively no more different than light green and dark green, are conceived as totally different. A Russian will make the same red-pink and orange-brown distinctions, but will also make a further distinction between sinij and goluboj, which English speakers would simply call dark and light blue. To Russian speakers, sinij and goluboj are as separate as red and pink or orange and brown.

Color terms evolve. It is argued that there are a limited number of universal "basic color terms" which begin to be used by individual cultures in a relatively fixed order. For example, a culture would start with only two terms, meaning roughly 'dark' (covering black, dark colors and cold colors such as blue ) and 'bright' (covering white, light colors and warm colors such as red), before adding more specific color names, in the order of red; green and/or yellow; blue; brown; and orange, pink, purple and/or gray. Older arguments for this theory also stipulated that the acquisition and use of basic color terms further along the evolutionary order indicated a more complex culture with more highly developed technology.

A somewhat dated example of a universal color categories theory is Basic Color Terms: Their Universality and Evolution (1969) by Brent Berlin and Paul Kay. A more recent example of a linguistic determinism theory might be Is color categorisation universal? New evidence from a stone-age culture (1999) by Jules Davidoff et al. The idea of linguistically determined color categories is often used as evidence for the Sapir-Whorf hypothesis (Language, Thought and Reality (1956) by Benjamin Lee Whorf).

Additionally, different colors are often associated with different emotional states, values or groups, but these associations can vary between cultures. In one system, red is considered to motivate action; orange and purple are related to spirituality; yellow cheers; green creates cosiness and warmth; blue relaxes; and white is associated with either purity or death. These associations are described more fully in the individual color pages, and under color psychology.

See also: National colors

Color constancy Edit

The trichromatric theory discussed above is strictly true only if the whole scene seen by the eye is of one and the same color, which of course is unrealistic. In reality, the brain compares the various colors in a scene, in order to eliminate the effects of the illumination. If a scene is illuminated with one light, and then with another, as long as the difference between the light sources stays within a reasonable range, the colors of the scene will nevertheless appear constant to us. This was studied by Edwin Land in the 1970s and led to his retinex theory of color constancy.


Note: the following comparison requires an all-digital display setup (commonly, a laptop or DVI-connected LCD) to avoid errors caused by an unfortunate interaction between frequency response and gamma curves.

Compare the visibility of the RGB primary and secondary colors against a white background:

red green blue red+green green+blue red+blue red+green+blue zero light

Again, compare variations on gray backgrounds—#7f7f7f, #5f5f5f & #9f9f9f—the eight RGB primaries are equidistant from #7f7f7f in a 3-d geometrical representation of RGB color space—a reminder of the importance of background color for color perception.

Background = #7f7f7f

red green blue red+green green+blue red+blue red+green+blue zero light

And let us look at black again, for completeness. (Note that your monitor background probably is not perfectly black, as you can see by switching off the monitor.)

Background = #000000

red green blue red+green green+blue red+blue red+green+blue zero light

Measurement and reproduction of color Edit


Two different light spectra which have the same effect on the three color receptors in the human eye will be perceived as the same color. This is exemplified by the white light that is emitted by fluorescent lamps, which typically has a spectrum consisting of a few narrow bands, while daylight has a continuous spectrum. The human eye cannot tell the difference between such light spectra just by looking into the light source, although reflected colors from objects can look different. (This is often exploited e.g. to make fruit or tomatoes look more brightly red in shops.)

Similarly, most human color perceptions can be generated by a mixture of three colors called primaries. This is used to reproduce color scenes in photography, printing, television and other media. There are a number of methods or color spaces for specifying a color in terms of three particular primary colors. Each method has its advantages and disadvantages depending on the particular application.

No mixture of colors, though, can produce a fully pure color perceived as completely identical to a spectral color, although one can get very close for the longer wavelengths, where the chromaticity diagram above has a nearly straight edge. For example, mixing green light (530 nm) and blue light (460 nm) produces cyan light that is slightly desaturated, because response of the red color receptor would be greater to the green and blue light in the mixture than it would be to a pure cyan light at 485 nm that has the same intensity as the mixture of blue and green.

Because of this, and because the primaries in color printing systems generally are not pure themselves, the colors reproduced are never perfectly saturated colors, and so spectral colors cannot be matched exactly. However, natural scenes rarely contain fully saturated colors, thus such scenes can usually be approximated well by these systems. The range of colors that can be reproduced with a given color reproduction system is called the gamut. The CIE chromaticity diagram can be used to describe the gamut.

Another problem with color reproduction systems is connected with the acquisition devices, like cameras or scanners. The characteristics of the color sensors in the devices are often very far from the characteristics of the receptors in the human eye. In effect, acquisition of colors that have some special, often very "jagged", spectra caused for example by unusual lighting of the photographed scene can be relatively poor.

Species that have color receptors different from humans, e. g. birds that may have four receptors, can differentiate some colors that look the same to a human. In such cases, a color reproduction system 'tuned' to a human with normal color vision may give very inaccurate results for the other observers.

The next problem is different color response of different devices. For color information stored and transferred in a digital form, color management technique based on color profiles attached to color data and to devices with different color response helps to avoid deformations of the reproduced colors. The technique works only for colors in gamut of the particular devices, e.g. it can still happen that your monitor is not able to show you real color of your goldfish even if your camera can receive and store the color information properly and vice versa.

Pigments and reflective media Edit

When producing a color print or painting a surface, the applied paint changes the surface; if the surface is then illuminated with white light (which consists of equal intensities of all visible wavelengths), the reflected light will have a spectrum corresponding to the desired color. If a dab of paint looks red in white light, that is because the reflection of all non-red wavelengths is interrupted by the pigment, such that only red light is reflected into one's eye.

Structural color Edit

Structural color is a property of some surfaces that are scored with fine parallel lines, formed of many thin parallel layers, or otherwise composed of periodic microstructures on the scale of the color's wavelength, to make a diffraction grating. The grating reflects some wavelengths more than others due to interference phenomena, causing white light to be reflected as colored light. Structural color is responsible for the blues and greens of most bird feathers (example, blue jay feathers) as well as certain butterfly wings and beetle shells. Variations in the pattern's spacing often give rise to an iridescent effect, as seen in peacock feathers, films of oil and mother of pearl, because the reflected color depends upon the viewing angle.

Structural color is studied in the field of thin-film optics. A layman's term that describes particularly the most ordered structural colors is iridescence.

Additional terms Edit

  • Hue: the color's location on the spectrum.
  • Saturation: how "dense" or "intense" or "bright" a color is.
  • Value: how light or dark a color is.
  • Tint: a color made lighter by adding white.
  • Shade: a color made darker by adding black.

See also Edit

External links and sourcesEdit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.